线程状态转换

新建(New)

创建后尚未启动。

可运行(Runnable)

可能正在运行,也可能正在等待 CPU 时间片。

包含了操作系统线程状态中的 Running 和 Ready。

阻塞(Blocking)

等待获取一个排它锁,如果其线程释放了锁就会结束此状态。

无限期等待(Waiting)

等待其它线程显式地唤醒,否则不会被分配 CPU 时间片。

进入方法 退出方法
没有设置 Timeout 参数的 Object.wait() 方法 Object.notify() / Object.notifyAll()
没有设置 Timeout 参数的 Thread.join() 方法 被调用的线程执行完毕
LockSupport.park() 方法 -

限期等待(Timed Waiting)

无需等待其它线程显式地唤醒,在一定时间之后会被系统自动唤醒。

调用 Thread.sleep() 方法使线程进入限期等待状态时,常常用“使一个线程睡眠”进行描述。

调用 Object.wait() 方法使线程进入限期等待或者无限期等待时,常常用“挂起一个线程”进行描述。

睡眠和挂起是用来描述行为,而阻塞和等待用来描述状态。

阻塞和等待的区别在于,阻塞是被动的,它是在等待获取一个排它锁。而等待是主动的,通过调用 Thread.sleep()Object.wait() 等方法进入。

进入方法 退出方法
Thread.sleep() 方法 时间结束
设置了 Timeout 参数的 Object.wait() 方法 时间结束 / Object.notify() / Object.notifyAll()
设置了 Timeout 参数的 Thread.join() 方法 时间结束 / 被调用的线程执行完毕
LockSupport.parkNanos() 方法 -
LockSupport.parkUntil() 方法 -

死亡(Terminated)

可以是线程结束任务后自己结束,或者产生了异常而结束。

线程使用方式

  • 实现 Runnable 接口;
  • 实现 callable 接口;
  • 继承 Thread 类;

实现 RunnableCallable 接口的类只能当做一个可以在线程中运行的任务,不是真正意义上的线程,因此最后还需要通过 Thread 来调用。可以说任务是通过线程驱动从而执行的。

实现 Runnable 接口

需要实现 run() 方法。

通过 Thread 调用 start() 方法来启动线程。

1
2
3
4
5
public class MyRunnable implements Runnable {
public void run() {
// ...
}
}
1
2
3
4
5
public static void main(String[] args) {
MyRunnable mr = new MyRunnable();
Thread thread = new Thread(mr);
thread.start();
}

实现 callable 接口

Runnable 相比,Callable 可以有返回值,返回值通过 FutureTask 进行封装。

1
2
3
4
5
public class MyCallable implements Callable<Integer> {
public Integer call() {
return 123;
}
}
1
2
3
4
5
6
7
public static void main(String[] args) throws ExecutionException, InterruptedException {
MyCallable mc = new MyCallable();
FutureTask<Integer> ft = new FutureTask<>(mc);
Thread thread = new Thread(ft);
thread.start();
System.out.println(ft.get());
}

继承 Thread 类

同样也需要实现 run() 方法,因为 Thread 类也实现了 Runnable 接口。

当调用 start() 方法启动一个线程时,虚拟机会将该线程放入就绪队列中等待被调度,当一个线程调度时会执行该线程的 run() 方法。

1
2
3
4
5
public class MyThread extends Thread {
public void run() {
// ...
}
}
1
2
3
4
public static void main(String[] args) {
MyThread mt = new MyThread();
mt.start();
}

实现接口 VS 继承 Thread

实现接口要比继承 Thread 好一些,因为:

  • Java 不支持多重继承,因此继承了 Thread 类就无法继承其它类,但是可以实现多个接口;
  • 类可能只要求可执行就行,继承整个 Thread 类开销过大。

基础线程机制

Executor

Executor 管理多个异步任务的执行,而无需程序员显示的管理线程周期。这里异步是指多个任务的执行互不干扰,不需要进行同步操作。

主要有三种 Executor:

  • CachedThreadPool: 一个任务创建一个线程;
  • FixedThreadPool: 所有任务只能使用固定大小的线程;
  • SingleThreadExecutor: 相当于大小为 1 的 FixedThreadPool
1
2
3
4
5
6
7
public static void main(String[] args) {
ExecutorService executorService = Executors.newCachedThreadPool();
for (int i = 0; i < 5; i++) {
executorService.execute(new MyRunnable());
}
executorService.shutdown();
}

Daemon

守护线程是程序运行时在后台提供服务的线程,不属于程序中不可或缺的部分。当所有非守护线程结束时,程序也就终止,同时会杀死所有守护线程。

main() 属于非守护线程。

使用 setDaemon() 方法将一个线程设置成守护线程。

1
2
3
4
public static void main(String[] args) {
Thread thread = new Thread(new MyRunnable());
thread.setDaemon(true);
}

sleep()

Thread.sleep(millisec) 方法会休眠当前正在执行的线程,millisec 单位为毫秒。

sleep() 可能会抛出 InterruptedException,因为异常不能跨线程传回 main() 中,因此必须在本地进行处理。线程中抛出其他异常也需要在本地进行处理。

1
2
3
4
5
6
7
public void run() {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}

yield()

对静态方法 Thread.yield() 的调用声明了当前线程已经完成类生命周期中最重要的部分,可以切换给其他线程来执行。该方法只是对线程调度器的一个建议,而且也只是建议具有相同优先级的其他线程可以运行。

线程中断

一个线程执行完毕之后会自动结束,如果在运行过程中发生异常也会提前结束。

InterruptedException

通过调用一个线程的 interrupt() 来中断该线程,如果该线程处于阻塞、限期等待或者无限期等待状态,那么会抛出 InterruptedException,从而提前结束该线程。但是不能中断 I/O 阻塞和 synchronized 锁阻塞。

对于以下代码,在 main() 中启动一个线程之后再中断它,由于线程中调用了 Thread.sleep() 方法,因此会抛出一个 InterruptedException,从而提前结束线程,不执行之后的语句。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public class InterruptExample {

private static class MyThread1 extends Thread {
@Override
public void run() {
try {
Thread.sleep(2000);
System.out.println("Thread run");
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
1
2
3
4
5
6
public static void main(String[] args) throws InterruptedException {
Thread thread1 = new MyThread1();
thread1.start();
thread1.interrupt();
System.out.println("Main run");
}
1
2
3
4
5
6
Main run
java.lang.InterruptedException: sleep interrupted
at java.lang.Thread.sleep(Native Method)
at InterruptExample.lambda$main$0(InterruptExample.java:5)
at InterruptExample$$Lambda$1/713338599.run(Unknown Source)
at java.lang.Thread.run(Thread.java:745)

interrupted()

如果一个线程的 run() 方法执行一个无限循环,并且没有执行 sleep() 等会抛出 InterruptedException 的操作,那么调用线程的 interrupt() 方法就无法使线程提前结束。

但是调用 interrupt() 方法会设置线程的中断标记,此时调用 interrupted() 方法会返回 true。因此可以在循环体中使用 interrupted() 方法来判断线程是否处于中断状态,从而提前结束线程。

1
2
3
4
5
6
7
8
9
10
11
12
public class InterruptExample {

private static class MyThread2 extends Thread {
@Override
public void run() {
while (!interrupted()) {
// ..
}
System.out.println("Thread end");
}
}
}
1
2
3
4
5
public static void main(String[] args) throws InterruptedException {
Thread thread2 = new MyThread2();
thread2.start();
thread2.interrupt();
}
1
Thread end

Executor 的中断操作

调用 Executor 的 shutdown() 方法会等待线程都执行完毕之后再关闭,但是如果调用的是 shutdownNow() 方法,则相当于调用每个线程的 interrupt() 方法。

如果只想中断 Executor 中的一个线程,可以通过使用 submit() 方法来提交一个线程,它会返回一个 Future<?> 对象,通过调用该对象的 cancel(true) 方法就可以中断线程。

1
2
3
4
Future<?> future = executorService.submit(() -> {
// ..
});
future.cancel(true);

线程互斥同步

Java 提供了两种锁机制来控制多个线程对共享资源的互斥访问,第一个是 JVM 实现的 synchronized,而另一个是 JDK 实现的 ReentrantLock

synchronized

1.同步一个代码块

1
2
3
4
5
public void func() {
synchronized (this) {
// ...
}
}

它只作用于同一个对象,如果调用两个对象上的同步代码块,就不会进行同步。

对于以下代码,使用 ExecutorService 执行了两个线程,由于调用的是同一个对象的同步代码块,因此这两个线程会进行同步,当一个线程进入同步代码块时,另一个线程就必须等待。

1
2
3
4
5
6
7
8
9
10
public class SynchronizedExample {

public void func1() {
synchronized (this) {
for (int i = 0; i < 10; i++) {
System.out.print(i + " ");
}
}
}
}
1
2
3
4
5
6
public static void main(String[] args) {
SynchronizedExample e1 = new SynchronizedExample();
ExecutorService executorService = Executors.newCachedThreadPool();
executorService.execute(() -> e1.func1());
executorService.execute(() -> e1.func1());
}
1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

对于以下代码,两个线程调用了不同对象的同步代码块,因此这两个线程就不需要同步。从输出结果可以看出,两个线程交叉执行。

1
2
3
4
5
6
7
public static void main(String[] args) {
SynchronizedExample e1 = new SynchronizedExample();
SynchronizedExample e2 = new SynchronizedExample();
ExecutorService executorService = Executors.newCachedThreadPool();
executorService.execute(() -> e1.func1());
executorService.execute(() -> e2.func1());
}
1
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9

2.同步一个方法

1
2
3
public synchronized void func () {
// ...
}

它和同步一个代码块一样,作用于同一个对象。

3.同步一个类

1
2
3
4
5
public void func() {
synchronized (SynchronizedExample.class) {
// ...
}
}

作用于整个类,也就是说两个线程调用同一个类的不同对象上的这种同步语句,也会进行同步。

1
2
3
4
5
6
7
8
9
10
public class SynchronizedExample {

public void func2() {
synchronized (SynchronizedExample.class) {
for (int i = 0; i < 10; i++) {
System.out.print(i + " ");
}
}
}
}
1
2
3
4
5
6
7
public static void main(String[] args) {
SynchronizedExample e1 = new SynchronizedExample();
SynchronizedExample e2 = new SynchronizedExample();
ExecutorService executorService = Executors.newCachedThreadPool();
executorService.execute(() -> e1.func2());
executorService.execute(() -> e2.func2());
}
1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

4.同步一个静态方法

1
2
3
public synchronized static void fun() {
// ...
}

作用于整个类。

ReentrantLock

ReentrantLockjava.util.concurrent(J.U.C)包中的锁。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public class LockExample {

private Lock lock = new ReentrantLock();

public void func() {
lock.lock();
try {
for (int i = 0; i < 10; i++) {
System.out.print(i + " ");
}
} finally {
lock.unlock(); // 确保释放锁,从而避免发生死锁。
}
}
}
1
2
3
4
5
6
public static void main(String[] args) {
LockExample lockExample = new LockExample();
ExecutorService executorService = Executors.newCachedThreadPool();
executorService.execute(() -> lockExample.func());
executorService.execute(() -> lockExample.func());
}
1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

比较

1.锁的实现

synchronized 是 JVM 实现的,而 ReentrantLock 是 JDK 实现的。

2.性能

新版本 Java 对 synchronized 进行了很多优化,例如自旋锁等,synchronizedReentrantLock 大致相同。

3.等待可中断

当持有锁的线程长期不释放锁的时候,正在等待的线程可以选择放弃等待,改为处理其他事情。

ReentrantLock 可中断,而 synchronized 不行。

4.公平锁

公平锁是指多个线程在等待同一个锁时,必须按照申请锁的时间顺序来依次获得锁。

synchronized 中的锁是非公平的,ReentrantLock 默认情况下也是非公平的,但是也可以是公平的。

5.锁绑定多个条件

一个 ReentrantLock 可以同时绑定多个 Condition 对象。

使用选择

除非需要使用 ReentrantLock 的高级功能,否则优先使用 synchronized。这是因为 synchronized 是 JVM 实现的一种锁机制,JVM 原生地支持它,而 ReentrantLock 不是所有的 JDK 版本都支持。并且使用 synchronized 不用担心没有释放锁而导致死锁问题,因为 JVM 会确保锁的释放。

线程间协作

当多个线程可以一起工作去解决某个问题时,如果某些部分必须在其它部分之前完成,那么就需要对线程进行协调。

join()

在线程中调用另一个线程的 join() 方法,会将当前线程挂起,而不是忙等待,直到目标线程结束。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
public class JoinExample {

private class A extends Thread {
@Override
public void run() {
System.out.println("A");
}
}

private class B extends Thread {

private A a;

B(A a) {
this.a = a;
}

@Override
public void run() {
try {
a.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("B");
}
}

public void test() {
A a = new A();
B b = new B(a);
b.start();
a.start();
}
}
1
2
3
4
public static void main(String[] args) {
JoinExample example = new JoinExample();
example.test();
}
1
2
A
B

wait() notify() notifyAll()

当调用 wait() 使得线程等待某个条件满足,

线程在等待时会挂起,当其他线程的运行使这个条件满足时,其他线程会调用 notify() 或者 notifyAll() 来唤醒挂起的线程。

它们都属于 Object 的一部分,而不属于 Thread

只能用在同步方法或者同步控制块中使用,否则会在运行时抛出 IllegalMonitorStateExeception

使用 wait() 挂起期间,线程会释放锁。这是因为,如果没有释放锁,那么其它线程就无法进入对象的同步方法或者同步控制块中,那么就无法执行 notify() 或者 notifyAll() 来唤醒挂起的线程,造成死锁。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public class WaitNotifyExample {
public synchronized void before() {
System.out.println("before");
notifyAll();
}

public synchronized void after() {
try {
wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("after");
}
}
1
2
3
4
5
6
public static void main(String[] args) {
ExecutorService executorService = Executors.newCachedThreadPool();
WaitNotifyExample example = new WaitNotifyExample();
executorService.execute(() -> example.after());
executorService.execute(() -> example.before());
}
1
2
before
after

wait()sleep() 的区别

  • wait()Object 的方法,而 sleep()Thread 的静态方法;
  • wait() 会释放锁,sleep() 不会。

await() signal() signalAll()

java.util.concurrent 类库中提供了 Condition 类来实现线程之间的协调,可以在 Condition 上调用 await() 方法使线程等待,其它线程调用 signal()signalAll() 方法唤醒等待的线程。相比于 wait() 这种等待方式,await() 可以指定等待的条件,因此更加灵活。

使用 Lock 来获取一个 Condition 对象。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
public class AwaitSignalExample {
private Lock lock = new ReentrantLock();
private Condition condition = lock.newCondition();

public void before() {
lock.lock();
try {
System.out.println("before");
condition.signalAll();
} finally {
lock.unlock();
}
}

public void after() {
lock.lock();
try {
condition.await();
System.out.println("after");
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
}
1
2
3
4
5
6
public static void main(String[] args) {
ExecutorService executorService = Executors.newCachedThreadPool();
AwaitSignalExample example = new AwaitSignalExample();
executorService.execute(() -> example.after());
executorService.execute(() -> example.before());
}
1
2
before
after

评论




博客内容遵循 署名-非商业性使用-相同方式共享 4.0 国际 (CC BY-NC-SA 4.0) 协议

载入天数...载入时分秒... 本站使用 Volantis 作为主题 鲁ICP备-20012065号